3.1893 \(\int \frac{d+e x}{(a d e+(c d^2+a e^2) x+c d e x^2)^3} \, dx\)

Optimal. Leaf size=142 \[ \frac{e^2}{(d+e x) \left (c d^2-a e^2\right )^3}+\frac{2 c d e}{\left (c d^2-a e^2\right )^3 (a e+c d x)}-\frac{c d}{2 \left (c d^2-a e^2\right )^2 (a e+c d x)^2}+\frac{3 c d e^2 \log (a e+c d x)}{\left (c d^2-a e^2\right )^4}-\frac{3 c d e^2 \log (d+e x)}{\left (c d^2-a e^2\right )^4} \]

[Out]

-(c*d)/(2*(c*d^2 - a*e^2)^2*(a*e + c*d*x)^2) + (2*c*d*e)/((c*d^2 - a*e^2)^3*(a*e + c*d*x)) + e^2/((c*d^2 - a*e
^2)^3*(d + e*x)) + (3*c*d*e^2*Log[a*e + c*d*x])/(c*d^2 - a*e^2)^4 - (3*c*d*e^2*Log[d + e*x])/(c*d^2 - a*e^2)^4

________________________________________________________________________________________

Rubi [A]  time = 0.112844, antiderivative size = 142, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.061, Rules used = {626, 44} \[ \frac{e^2}{(d+e x) \left (c d^2-a e^2\right )^3}+\frac{2 c d e}{\left (c d^2-a e^2\right )^3 (a e+c d x)}-\frac{c d}{2 \left (c d^2-a e^2\right )^2 (a e+c d x)^2}+\frac{3 c d e^2 \log (a e+c d x)}{\left (c d^2-a e^2\right )^4}-\frac{3 c d e^2 \log (d+e x)}{\left (c d^2-a e^2\right )^4} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^3,x]

[Out]

-(c*d)/(2*(c*d^2 - a*e^2)^2*(a*e + c*d*x)^2) + (2*c*d*e)/((c*d^2 - a*e^2)^3*(a*e + c*d*x)) + e^2/((c*d^2 - a*e
^2)^3*(d + e*x)) + (3*c*d*e^2*Log[a*e + c*d*x])/(c*d^2 - a*e^2)^4 - (3*c*d*e^2*Log[d + e*x])/(c*d^2 - a*e^2)^4

Rule 626

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c*x)/e)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
 IntegerQ[p]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{d+e x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^3} \, dx &=\int \frac{1}{(a e+c d x)^3 (d+e x)^2} \, dx\\ &=\int \left (\frac{c^2 d^2}{\left (c d^2-a e^2\right )^2 (a e+c d x)^3}-\frac{2 c^2 d^2 e}{\left (c d^2-a e^2\right )^3 (a e+c d x)^2}+\frac{3 c^2 d^2 e^2}{\left (c d^2-a e^2\right )^4 (a e+c d x)}-\frac{e^3}{\left (c d^2-a e^2\right )^3 (d+e x)^2}-\frac{3 c d e^3}{\left (c d^2-a e^2\right )^4 (d+e x)}\right ) \, dx\\ &=-\frac{c d}{2 \left (c d^2-a e^2\right )^2 (a e+c d x)^2}+\frac{2 c d e}{\left (c d^2-a e^2\right )^3 (a e+c d x)}+\frac{e^2}{\left (c d^2-a e^2\right )^3 (d+e x)}+\frac{3 c d e^2 \log (a e+c d x)}{\left (c d^2-a e^2\right )^4}-\frac{3 c d e^2 \log (d+e x)}{\left (c d^2-a e^2\right )^4}\\ \end{align*}

Mathematica [A]  time = 0.102824, size = 127, normalized size = 0.89 \[ \frac{\frac{4 c d e \left (c d^2-a e^2\right )}{a e+c d x}+\frac{2 c d^2 e^2-2 a e^4}{d+e x}-\frac{c d \left (c d^2-a e^2\right )^2}{(a e+c d x)^2}+6 c d e^2 \log (a e+c d x)-6 c d e^2 \log (d+e x)}{2 \left (c d^2-a e^2\right )^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^3,x]

[Out]

(-((c*d*(c*d^2 - a*e^2)^2)/(a*e + c*d*x)^2) + (4*c*d*e*(c*d^2 - a*e^2))/(a*e + c*d*x) + (2*c*d^2*e^2 - 2*a*e^4
)/(d + e*x) + 6*c*d*e^2*Log[a*e + c*d*x] - 6*c*d*e^2*Log[d + e*x])/(2*(c*d^2 - a*e^2)^4)

________________________________________________________________________________________

Maple [A]  time = 0.055, size = 142, normalized size = 1. \begin{align*} -{\frac{{e}^{2}}{ \left ( a{e}^{2}-c{d}^{2} \right ) ^{3} \left ( ex+d \right ) }}-3\,{\frac{{e}^{2}cd\ln \left ( ex+d \right ) }{ \left ( a{e}^{2}-c{d}^{2} \right ) ^{4}}}-{\frac{cd}{2\, \left ( a{e}^{2}-c{d}^{2} \right ) ^{2} \left ( cdx+ae \right ) ^{2}}}+3\,{\frac{{e}^{2}cd\ln \left ( cdx+ae \right ) }{ \left ( a{e}^{2}-c{d}^{2} \right ) ^{4}}}-2\,{\frac{dec}{ \left ( a{e}^{2}-c{d}^{2} \right ) ^{3} \left ( cdx+ae \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3,x)

[Out]

-e^2/(a*e^2-c*d^2)^3/(e*x+d)-3*e^2/(a*e^2-c*d^2)^4*c*d*ln(e*x+d)-1/2*c*d/(a*e^2-c*d^2)^2/(c*d*x+a*e)^2+3*e^2/(
a*e^2-c*d^2)^4*c*d*ln(c*d*x+a*e)-2*c*d/(a*e^2-c*d^2)^3*e/(c*d*x+a*e)

________________________________________________________________________________________

Maxima [B]  time = 1.22685, size = 579, normalized size = 4.08 \begin{align*} \frac{3 \, c d e^{2} \log \left (c d x + a e\right )}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}} - \frac{3 \, c d e^{2} \log \left (e x + d\right )}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}} + \frac{6 \, c^{2} d^{2} e^{2} x^{2} - c^{2} d^{4} + 5 \, a c d^{2} e^{2} + 2 \, a^{2} e^{4} + 3 \,{\left (c^{2} d^{3} e + 3 \, a c d e^{3}\right )} x}{2 \,{\left (a^{2} c^{3} d^{7} e^{2} - 3 \, a^{3} c^{2} d^{5} e^{4} + 3 \, a^{4} c d^{3} e^{6} - a^{5} d e^{8} +{\left (c^{5} d^{8} e - 3 \, a c^{4} d^{6} e^{3} + 3 \, a^{2} c^{3} d^{4} e^{5} - a^{3} c^{2} d^{2} e^{7}\right )} x^{3} +{\left (c^{5} d^{9} - a c^{4} d^{7} e^{2} - 3 \, a^{2} c^{3} d^{5} e^{4} + 5 \, a^{3} c^{2} d^{3} e^{6} - 2 \, a^{4} c d e^{8}\right )} x^{2} +{\left (2 \, a c^{4} d^{8} e - 5 \, a^{2} c^{3} d^{6} e^{3} + 3 \, a^{3} c^{2} d^{4} e^{5} + a^{4} c d^{2} e^{7} - a^{5} e^{9}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3,x, algorithm="maxima")

[Out]

3*c*d*e^2*log(c*d*x + a*e)/(c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8) - 3*c*d
*e^2*log(e*x + d)/(c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8) + 1/2*(6*c^2*d^2
*e^2*x^2 - c^2*d^4 + 5*a*c*d^2*e^2 + 2*a^2*e^4 + 3*(c^2*d^3*e + 3*a*c*d*e^3)*x)/(a^2*c^3*d^7*e^2 - 3*a^3*c^2*d
^5*e^4 + 3*a^4*c*d^3*e^6 - a^5*d*e^8 + (c^5*d^8*e - 3*a*c^4*d^6*e^3 + 3*a^2*c^3*d^4*e^5 - a^3*c^2*d^2*e^7)*x^3
 + (c^5*d^9 - a*c^4*d^7*e^2 - 3*a^2*c^3*d^5*e^4 + 5*a^3*c^2*d^3*e^6 - 2*a^4*c*d*e^8)*x^2 + (2*a*c^4*d^8*e - 5*
a^2*c^3*d^6*e^3 + 3*a^3*c^2*d^4*e^5 + a^4*c*d^2*e^7 - a^5*e^9)*x)

________________________________________________________________________________________

Fricas [B]  time = 2.03729, size = 1099, normalized size = 7.74 \begin{align*} -\frac{c^{3} d^{6} - 6 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} + 2 \, a^{3} e^{6} - 6 \,{\left (c^{3} d^{4} e^{2} - a c^{2} d^{2} e^{4}\right )} x^{2} - 3 \,{\left (c^{3} d^{5} e + 2 \, a c^{2} d^{3} e^{3} - 3 \, a^{2} c d e^{5}\right )} x - 6 \,{\left (c^{3} d^{3} e^{3} x^{3} + a^{2} c d^{2} e^{4} +{\left (c^{3} d^{4} e^{2} + 2 \, a c^{2} d^{2} e^{4}\right )} x^{2} +{\left (2 \, a c^{2} d^{3} e^{3} + a^{2} c d e^{5}\right )} x\right )} \log \left (c d x + a e\right ) + 6 \,{\left (c^{3} d^{3} e^{3} x^{3} + a^{2} c d^{2} e^{4} +{\left (c^{3} d^{4} e^{2} + 2 \, a c^{2} d^{2} e^{4}\right )} x^{2} +{\left (2 \, a c^{2} d^{3} e^{3} + a^{2} c d e^{5}\right )} x\right )} \log \left (e x + d\right )}{2 \,{\left (a^{2} c^{4} d^{9} e^{2} - 4 \, a^{3} c^{3} d^{7} e^{4} + 6 \, a^{4} c^{2} d^{5} e^{6} - 4 \, a^{5} c d^{3} e^{8} + a^{6} d e^{10} +{\left (c^{6} d^{10} e - 4 \, a c^{5} d^{8} e^{3} + 6 \, a^{2} c^{4} d^{6} e^{5} - 4 \, a^{3} c^{3} d^{4} e^{7} + a^{4} c^{2} d^{2} e^{9}\right )} x^{3} +{\left (c^{6} d^{11} - 2 \, a c^{5} d^{9} e^{2} - 2 \, a^{2} c^{4} d^{7} e^{4} + 8 \, a^{3} c^{3} d^{5} e^{6} - 7 \, a^{4} c^{2} d^{3} e^{8} + 2 \, a^{5} c d e^{10}\right )} x^{2} +{\left (2 \, a c^{5} d^{10} e - 7 \, a^{2} c^{4} d^{8} e^{3} + 8 \, a^{3} c^{3} d^{6} e^{5} - 2 \, a^{4} c^{2} d^{4} e^{7} - 2 \, a^{5} c d^{2} e^{9} + a^{6} e^{11}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3,x, algorithm="fricas")

[Out]

-1/2*(c^3*d^6 - 6*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 + 2*a^3*e^6 - 6*(c^3*d^4*e^2 - a*c^2*d^2*e^4)*x^2 - 3*(c^3*d
^5*e + 2*a*c^2*d^3*e^3 - 3*a^2*c*d*e^5)*x - 6*(c^3*d^3*e^3*x^3 + a^2*c*d^2*e^4 + (c^3*d^4*e^2 + 2*a*c^2*d^2*e^
4)*x^2 + (2*a*c^2*d^3*e^3 + a^2*c*d*e^5)*x)*log(c*d*x + a*e) + 6*(c^3*d^3*e^3*x^3 + a^2*c*d^2*e^4 + (c^3*d^4*e
^2 + 2*a*c^2*d^2*e^4)*x^2 + (2*a*c^2*d^3*e^3 + a^2*c*d*e^5)*x)*log(e*x + d))/(a^2*c^4*d^9*e^2 - 4*a^3*c^3*d^7*
e^4 + 6*a^4*c^2*d^5*e^6 - 4*a^5*c*d^3*e^8 + a^6*d*e^10 + (c^6*d^10*e - 4*a*c^5*d^8*e^3 + 6*a^2*c^4*d^6*e^5 - 4
*a^3*c^3*d^4*e^7 + a^4*c^2*d^2*e^9)*x^3 + (c^6*d^11 - 2*a*c^5*d^9*e^2 - 2*a^2*c^4*d^7*e^4 + 8*a^3*c^3*d^5*e^6
- 7*a^4*c^2*d^3*e^8 + 2*a^5*c*d*e^10)*x^2 + (2*a*c^5*d^10*e - 7*a^2*c^4*d^8*e^3 + 8*a^3*c^3*d^6*e^5 - 2*a^4*c^
2*d^4*e^7 - 2*a^5*c*d^2*e^9 + a^6*e^11)*x)

________________________________________________________________________________________

Sympy [B]  time = 2.62892, size = 734, normalized size = 5.17 \begin{align*} - \frac{3 c d e^{2} \log{\left (x + \frac{- \frac{3 a^{5} c d e^{12}}{\left (a e^{2} - c d^{2}\right )^{4}} + \frac{15 a^{4} c^{2} d^{3} e^{10}}{\left (a e^{2} - c d^{2}\right )^{4}} - \frac{30 a^{3} c^{3} d^{5} e^{8}}{\left (a e^{2} - c d^{2}\right )^{4}} + \frac{30 a^{2} c^{4} d^{7} e^{6}}{\left (a e^{2} - c d^{2}\right )^{4}} - \frac{15 a c^{5} d^{9} e^{4}}{\left (a e^{2} - c d^{2}\right )^{4}} + 3 a c d e^{4} + \frac{3 c^{6} d^{11} e^{2}}{\left (a e^{2} - c d^{2}\right )^{4}} + 3 c^{2} d^{3} e^{2}}{6 c^{2} d^{2} e^{3}} \right )}}{\left (a e^{2} - c d^{2}\right )^{4}} + \frac{3 c d e^{2} \log{\left (x + \frac{\frac{3 a^{5} c d e^{12}}{\left (a e^{2} - c d^{2}\right )^{4}} - \frac{15 a^{4} c^{2} d^{3} e^{10}}{\left (a e^{2} - c d^{2}\right )^{4}} + \frac{30 a^{3} c^{3} d^{5} e^{8}}{\left (a e^{2} - c d^{2}\right )^{4}} - \frac{30 a^{2} c^{4} d^{7} e^{6}}{\left (a e^{2} - c d^{2}\right )^{4}} + \frac{15 a c^{5} d^{9} e^{4}}{\left (a e^{2} - c d^{2}\right )^{4}} + 3 a c d e^{4} - \frac{3 c^{6} d^{11} e^{2}}{\left (a e^{2} - c d^{2}\right )^{4}} + 3 c^{2} d^{3} e^{2}}{6 c^{2} d^{2} e^{3}} \right )}}{\left (a e^{2} - c d^{2}\right )^{4}} - \frac{2 a^{2} e^{4} + 5 a c d^{2} e^{2} - c^{2} d^{4} + 6 c^{2} d^{2} e^{2} x^{2} + x \left (9 a c d e^{3} + 3 c^{2} d^{3} e\right )}{2 a^{5} d e^{8} - 6 a^{4} c d^{3} e^{6} + 6 a^{3} c^{2} d^{5} e^{4} - 2 a^{2} c^{3} d^{7} e^{2} + x^{3} \left (2 a^{3} c^{2} d^{2} e^{7} - 6 a^{2} c^{3} d^{4} e^{5} + 6 a c^{4} d^{6} e^{3} - 2 c^{5} d^{8} e\right ) + x^{2} \left (4 a^{4} c d e^{8} - 10 a^{3} c^{2} d^{3} e^{6} + 6 a^{2} c^{3} d^{5} e^{4} + 2 a c^{4} d^{7} e^{2} - 2 c^{5} d^{9}\right ) + x \left (2 a^{5} e^{9} - 2 a^{4} c d^{2} e^{7} - 6 a^{3} c^{2} d^{4} e^{5} + 10 a^{2} c^{3} d^{6} e^{3} - 4 a c^{4} d^{8} e\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**3,x)

[Out]

-3*c*d*e**2*log(x + (-3*a**5*c*d*e**12/(a*e**2 - c*d**2)**4 + 15*a**4*c**2*d**3*e**10/(a*e**2 - c*d**2)**4 - 3
0*a**3*c**3*d**5*e**8/(a*e**2 - c*d**2)**4 + 30*a**2*c**4*d**7*e**6/(a*e**2 - c*d**2)**4 - 15*a*c**5*d**9*e**4
/(a*e**2 - c*d**2)**4 + 3*a*c*d*e**4 + 3*c**6*d**11*e**2/(a*e**2 - c*d**2)**4 + 3*c**2*d**3*e**2)/(6*c**2*d**2
*e**3))/(a*e**2 - c*d**2)**4 + 3*c*d*e**2*log(x + (3*a**5*c*d*e**12/(a*e**2 - c*d**2)**4 - 15*a**4*c**2*d**3*e
**10/(a*e**2 - c*d**2)**4 + 30*a**3*c**3*d**5*e**8/(a*e**2 - c*d**2)**4 - 30*a**2*c**4*d**7*e**6/(a*e**2 - c*d
**2)**4 + 15*a*c**5*d**9*e**4/(a*e**2 - c*d**2)**4 + 3*a*c*d*e**4 - 3*c**6*d**11*e**2/(a*e**2 - c*d**2)**4 + 3
*c**2*d**3*e**2)/(6*c**2*d**2*e**3))/(a*e**2 - c*d**2)**4 - (2*a**2*e**4 + 5*a*c*d**2*e**2 - c**2*d**4 + 6*c**
2*d**2*e**2*x**2 + x*(9*a*c*d*e**3 + 3*c**2*d**3*e))/(2*a**5*d*e**8 - 6*a**4*c*d**3*e**6 + 6*a**3*c**2*d**5*e*
*4 - 2*a**2*c**3*d**7*e**2 + x**3*(2*a**3*c**2*d**2*e**7 - 6*a**2*c**3*d**4*e**5 + 6*a*c**4*d**6*e**3 - 2*c**5
*d**8*e) + x**2*(4*a**4*c*d*e**8 - 10*a**3*c**2*d**3*e**6 + 6*a**2*c**3*d**5*e**4 + 2*a*c**4*d**7*e**2 - 2*c**
5*d**9) + x*(2*a**5*e**9 - 2*a**4*c*d**2*e**7 - 6*a**3*c**2*d**4*e**5 + 10*a**2*c**3*d**6*e**3 - 4*a*c**4*d**8
*e))

________________________________________________________________________________________

Giac [B]  time = 1.25553, size = 483, normalized size = 3.4 \begin{align*} \frac{6 \,{\left (c^{2} d^{3} e^{2} - a c d e^{4}\right )} \arctan \left (\frac{2 \, c d x e + c d^{2} + a e^{2}}{\sqrt{-c^{2} d^{4} + 2 \, a c d^{2} e^{2} - a^{2} e^{4}}}\right )}{{\left (c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}\right )} \sqrt{-c^{2} d^{4} + 2 \, a c d^{2} e^{2} - a^{2} e^{4}}} + \frac{6 \, c^{3} d^{4} x^{3} e^{3} + 9 \, c^{3} d^{5} x^{2} e^{2} + 2 \, c^{3} d^{6} x e - c^{3} d^{7} - 6 \, a c^{2} d^{2} x^{3} e^{5} + 12 \, a c^{2} d^{4} x e^{3} + 6 \, a c^{2} d^{5} e^{2} - 9 \, a^{2} c d x^{2} e^{6} - 12 \, a^{2} c d^{2} x e^{5} - 3 \, a^{2} c d^{3} e^{4} - 2 \, a^{3} x e^{7} - 2 \, a^{3} d e^{6}}{2 \,{\left (c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}\right )}{\left (c d x^{2} e + c d^{2} x + a x e^{2} + a d e\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3,x, algorithm="giac")

[Out]

6*(c^2*d^3*e^2 - a*c*d*e^4)*arctan((2*c*d*x*e + c*d^2 + a*e^2)/sqrt(-c^2*d^4 + 2*a*c*d^2*e^2 - a^2*e^4))/((c^4
*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8)*sqrt(-c^2*d^4 + 2*a*c*d^2*e^2 - a^2*e^
4)) + 1/2*(6*c^3*d^4*x^3*e^3 + 9*c^3*d^5*x^2*e^2 + 2*c^3*d^6*x*e - c^3*d^7 - 6*a*c^2*d^2*x^3*e^5 + 12*a*c^2*d^
4*x*e^3 + 6*a*c^2*d^5*e^2 - 9*a^2*c*d*x^2*e^6 - 12*a^2*c*d^2*x*e^5 - 3*a^2*c*d^3*e^4 - 2*a^3*x*e^7 - 2*a^3*d*e
^6)/((c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8)*(c*d*x^2*e + c*d^2*x + a*x*e^
2 + a*d*e)^2)